Designing Efficient & Effective Kitchen Lighting

Thereís a critical missing element in most American kitchens, and itís not a $10,000 range or a stainless steel French door refrigerator. No, itís simply good lighting. Most kitchens not only do not have enough lighting, they have the wrong kind of lighting.

Electrical Discharge (Arc) Lamps


Electrical discharge lamps create light by jumping a spark across two electrodes surrounded by inert gas.

The most common household incarnation of this type of lamp is the tubular fluorescent lamp found in just about all workshops, garages and basements.

Other types of electrical discharge lamps include sodium and mercury vapor lamps — used only for street lights and other outdoor applications and xenon-arc lamps used in special applications such as movie projectors, search lights and headlights for luxury cars. These collectively are sometimes referred to as High-Intensity Discharge — HID — lamps.
Your kitchen is more than just a place to cook and eat. It usually serves as the administrative and the social hub of the home. Because it typically opens for business before dawn and closes long after sunset, a kitchen uses a lot of energy for lighting. That makes this room an important place to use efficient lighting. While remodeling your kitchen, you have the perfect opportunity to create an effective but also highly efficient lighting system.

Designing a lighting system that provides just the right light yet uses very little electricity is the goal of lighting design. It is not a trivial process. And it requires an intimate understanding of how light works.

More than You Ever Wanted to Know about Lighting
If you have ever seen a welder at work, you know that arc welding produces an amazingly bright light — so bright that special eye protection is required. This was the first electric lamp: the carbon arc lamp. The 1860 Republican convention that nominated Abraham Lincoln for president was held in a large wooden building in Chicago lit by carbon arc lamps. The fact that it did not burn down, eliminating the newly formed Republican Party, is a testament to careful and constant vigilance. Temperamental, dangerous, expensive and requiring constant adjustment, these lamps were not practical for everyday use.

A few years later an English chemist, Sir Joseph Wilson Swan, D.Sc.h.c., FRS (and not Thomas Edison as you were taught in school), developed the practical incandescent lamp, the first relatively safe source of electric lighting.

There have been huge improvements in lighting since the 19th century, but almost all the lamps we use are still of the two types: incandescent and electrical discharge (the new name for arc lamps). The only new kind of lamp developed in the past 100 years is the light emitting diode (LED) which works on an entirely new principal.

How Electricity is Converted to Light
Light is composed of photons — very small particles that our eye can see. Photons move very quickly. In fact they travel at, ahem, the speed of light. They also vibrate. The rate of vibration, or frequency, determines the type and color of light they produce. We see in only a small portion of the total light spectrum. We can see only "visible light." The rest of the spectrum including infrared and ultraviolet, is invisible to us, although other animals can

Did Edison Invent the Light Bulb?


Almost certainly not.

Sir Joseph Swan, a British inventor, first patented a workable incandescent light bulb in Britain 10 years prior to Edison's patent.

Joseph Swan Sir Joseph Swan Swan published his work in Scientific American where Edison presumably read about it.

Swan sued Edison in English courts for patent infringement and won. Edison was forced to give Swan a substantial interest in Edison's British electricity venture, renamed Edison and Swan United Electric Company, colloquialkly known as "Ediswan" Electric.

On this side of the Atlantic, Edison fared no better. The U.S. Patent Office invalidated Edison's patent, ruling in 1883 that Edison had based his patent on the earlier work of William Sawyer who with Abon Man founded the Electro-Dynamic Light Company to produce his electric lamps. The company later became the lighting division of Westinghouse Corporation.

While some give Edison credit for inventing a practical filament that could be mass-produced inexpensively, in fact, the filament used in manufacturing for years before the tungsten filament was discovered, was a cellulose filament also invented by Swan.
see this light very well, which is why they seem to see in the dark. It's actually not dark to them.

Converting electricity into light requires adding energy to an atom until one of the electrons orbiting the nucleus of the atom jumps to a higher orbit. It then starts losing energy, and when it loses enough energy, it drops back down to its former orbit, and in the process emits a photon. Then the cycle repeats itself. It all happens very fast — the entire cycle of electron movement to a higher orbit then back down to the lower one takes just a tiny fraction of a second — and to a lot of atoms at the same time. The result is the steady flow of photons that we see as a stream of light. Some materials do better at producing light than others. In incandescent lamps, the material most commonly used is tungsten.

The Edison Screw


The Edison Screw is not, as you might think, the hosing you get from the Electric Company every summer on your air-conditioning bill. It's the standard light bulb base used in North America and most of the rest of the world.

The screw base was designed by Thomas Edison at the end of the 19th century. By 1909 it had become the de facto standard in North American, supplanting other bulb bases including the Westinghouse spring clip base devised by Nikola Tesla to get around Edison's patented bulb base.

Its chief competitor in the world of electric lighting is the bayonet mount used as the standard light bulb base in many former members of the British Empire including the United Kingdom, Australia, India, Sri Lanka, Ireland, and New Zealand, as well as parts of the Middle East and Africa. In the rest of the world, the bayonet base is a fringe player used mostly in automotive lamps (because it better resists loosening from vibration), flashlights and certain appliance lamps.

The wedge base is found on small bulbs such as mini-lamps used on Christmas trees and some halogen lamps (see photo below).

Screw bases are designated with the letter "E" followed by a number that indicates the diameter of the base in millimeters (i.e., E26 has a diameter of 26 mm.)

Common Name Size
Pea BulbE5
CandelabraE12 N. Amer.
E11 Europe
SmallE14 Europe
IntermediateE17 N. Amer.
StandardE26 N. Amer.
E27 Europe
MogulE39 N. Amer.
GolaithE40 Europe

There are seven common sizes of screw-in sockets used for light bulbs in the U.S. and Europe. Other sizes are in use, but they are for specialty products like movie projector bulbs.

The most common base size in North America is the E26 (Standard or MES), usually paired with the A-Series or pear shaped bulb, the standard light bulb shape in the U.S.

Intermediate E17 bases are often used in small table lamps, and the lamps inside refrigerators and microwaves in the U.S. The E14 small base is used mostly in Europe in place of the E17.

The larger Mogul or Goliath buses must be used with any bulb drawing more than 300 watts of electricity.

Tiny pea bulbs with an E5 screw base are usually found only on model trains and automobiles, and in other hobby or craft applications. Some older Christmas tree bulbs used the E5 base.

E26 and E27 bulbs are usually interchangeable, as are E39 and E40 bases, due to loose tolerances and minor differences in size, but care must be taken to avoid incompatible voltages. For example, a 100 watt general purpose Japanese bulb will usually fit in an American socket, but 120 volt U.S. standard electricity will usually fry the bulb in short order.


Incandescent Lamps
Light is produced in an incandescent lamp by heating a thin tungsten wire to very high temperatures (around 2200įC), causing it to incandesce or glow. The wire is called a filament and the incandescence is a result of the filament's resistance to the flow of electrical current. Most of the energy produced is converted to heat. But some of the energy results in light.

The enclosure or glass envelope around the filament is called the bulb and serves two primary functions. First, it keeps oxygen away from the filament. When the filament is exposed to oxygen, it quickly "oxidizes" and breaks within seconds. Secondly, the enclosure maintains a constant environment for the filament to retard the evaporation of tungsten. As the tungsten evaporates, the light eventually "burns out" when a point is reached at which the filament does not have enough tungsten to incandesce. For the standard A-Series incandescent lamp, that time is about 1,000 hours of steady use (flipping the light on and off — as we do in the real world — reduces that time to a few hundred hours). The enclosure is usually filled with an inert gas such as argon and nitrogen. Halogen and xenon (pronounced zeenon, not x-non) lamps are merely varieties of incandescent lamps filled with slightly different gas mixtures. Bulbs come in variety of shapes and sizes depending on their use and light output requirements.

Understanding Light Quality

Adapted from "I Hate Fluorescent" by Eric Strandberg, LC, Lighting Design Laboratory, Seattle City Light
Light quality has two parts: "color temperature" and "color rendering."
Color Temperature
The more obvious of the two is color temperature, — whether the light appears 'warm' (yellow) or 'cool' (blue).

Color temperature is usually stated in Kelvins (K) in the U.S. and Canada. An incandescent lamp is about 3000K (three thousand Kelvins — yellow/warm). Sunlight is about 5000K (blue/cool). Fluorescent lamps come in these and other color temperatures. Which one you choose is subjective — like picking paint colors.

Today, the most used color temperature is 3500K, not too cool, not too warm. This color is often preferred for retail, office and high activity residential spaces. Natural "daylight" lamps are the preference for bath- and dressing rooms.

Color Rendering
The other part of light quality is color rendering, this is the ability of a light source to reveal the "true" color of an object — that is, the color of the object as it appears at under the noonday sun. Light sources with poor color rendering cloud the difference between similar colors. For example a slate green wall may appear to be the same color as a gray blue wall, or dark amber paint may look the same as light brick.

Fair
50-70 CRI
Color Redering
Better
70-80 CRI

Best
80-90 CRI
Photo: Energy Star

Color rendering is expressed as a number on the Color Rendering Index (CRI), which is a scale from 0 to 100, with higher values being better. Most old style fluorescent lamps had poor color rendering (50 - 60) which is not flattering to either colors or people (dull colors & gray complexions). The newer fluorescents have a very good CRI (from around 75 up to as high as the 90s), which reveal true colors very accurately. the minimum CRI rating for any lamp is 80.

How to Determine Light Quality
Manufacturers are not required to disclose either the color temperature or color rendering of their lamps. Most do not, and such terms as "daylight" or "natural light" do not necessarily indicate a specific color temperature. Sylvania's daylight bulbs have a temperature of 3500K, while other "daylight" lamps range up to 5000K.

However, any lamp rated as an Energy Star product now has to disclose its color temperature. The Energy Star is awarded to only fluorescent bulbs that meet strict efficiency, quality, and lifetime criteria. Energy Star qualified fluorescent lighting uses 75% less energy and lasts up to ten times longer than normal incandescent lights. The small increase in the initial cost of these lamps is more than offset by their increased efficiency and longevity. In terms of life-cycle cost they are a true bargain and should be your first choice.

Some manufacturers now label their CFLs with a 3 digit "light quality" code to indicate the color rendering and color temperature of the lamp. The first digit represents the rounded off CRI, while the second two digits indicate the color temperature. For example, a CFL with a CRI of 83 and a color temperature of 2,700 K would be given a light quality code of 827 — a warm light that has good color rendering.
Incandescent lamps are known for their warm color, resulting from the fact that they emit more lower frequency red and orange light than high frequency blue and violet. Cheaper than any other lighting option to install, incandescent lamps are more expensive than every other lighting option to run.

Because they consume so much electricity incandescents are, by Act of Congress, on their way to extinction in the U.S. After January 1, 2014 most incandescent lamps will be illegal to sell in the U.S. The Energy Independence and Security Act of 2007 requires they be phased out starting in 2012. After 2014 only those special-use incandescents that cannot be replaced by a more efficient technology will be allowed. For example, small bulbs like appliance bulbs and Christmas tree lamps, some colored bulbs, hard use lamps where vibration can destroy a CFL ballast in minutes, bug lamps and infrared heat lamps. But with these few exceptions, the standard household A-Series incandescent bulb will be gone from this country in 2014.

Fluorescent Lamps
The tubular fluorescent lamp is the common household version of the electrical discharge or arc lamp. Clearly the technology has come a long way since the Republican National Convention in 1860. The lamps are now very safe and very efficient. In fact, fluorescent bulbs are up to 20 times more efficient than the simpler incandescent lamps. A newer, more compact, design with a screw base intended to replace incandescent lamps (compact fluorescent lamps or "CFL"s) is 2-10 times more efficient, although 2-5 is more common in household models. Some 35 watt CFLs have the same light output as 150 watt incandescents.

A fluorescent is a more complicated device than an incandescent lamp. It is basically an arc lamp inside a glass tube. Electrical current jumps from one electrode to the other through a mixture of argon gas that contains a tiny spec of mercury. The electricity vaporizes the atoms in the mercury forcing it to emit photons. Unfortunately these are in the ultraviolet range, and we cannot see them. So one more step is needed. The ultraviolet photons strike a phosphorus coating applied to the inside of the glass tube. The phosphorus absorbs the ultraviolet photons and releases photons in the visible spectrum that we can see. This is the "fluorescence" in fluorescent bulbs. The color or quality of the light emitted is controlled by the particular composition of the phosphorus applied to the tube.

Fluorescent lamps need a device called a "ballast" to provide the proper electrical input. Unlike the incandescent bulb, the electrical input to a fluorescent bulb is not constant. Electrons at rest prefer to stay that way. It takes a strong jolt of electricity to get them moving enough to arc. But once they are moving, they need very little electricity to keep moving. So the ballast has to produce a strong initial current to get the process started, then cut back slowly as the conductivity inside the bulb increases. Nor do they apply constant current. They work in pulses, sending current for a brief while, then turning it off, then back on, and so on.

The old electro-magnetic ballasts operated at 60 cycles per second - meaning that the lamp turned of and back on 60 times each second. Some people could see the resulting "flickering" and hear the high-pitched hum. A few people got headaches and nausea from it. The new electronic ballasts are a tremendous improvement. They operate at 24,000 CPS or higher and use less energy. There is no discernible flicker and no hum.

But, there is a problem with CFLs used in recessed ceiling fixtures. We are finding that CFLs installed with the ballast at the top, "ballast-up", do not last very long. Many other contractors are experiencing the same problem. No one knows why, although there are a number of theories. Ballast-up CFLs still outlast incandescent bulbs, but only by a factor of 2x or so. Bulb manufacturers are aware of the problem, and presumably are working on it. But, for now, don't expect the ceiling-mounted CFLs to last as long as the bulb in your desk lamp that is installed ballast-down. If you are buying new recessed ceiling fixtures, get the ones designed for CFLs that mount the bulb in the side rather than in the top of the fixture.

Fluorescent lamps do not abruptly "burn out" like incandescents. Over time they merely get dimmer, eventually losing as much as 30% of their light. Most people don't notice the change. What eventually fails in most fluorescents is the ballast. Once this is gone, the light simply will not work and requires replacement.

The unattractive "blue-ish" light associated with fluorescent lamps is pretty much a thing of the past (See Sidebar). "Daylight" or "natural" light fluorescents emit more light in the red-yellow range, emulating the warm look of familiar incandescent light. For most uses a light somewhere between warm incandescent and cool fluorescent is about right. For bathrooms and dressing rooms where makeup is applied, a cooler, natural daylight, color is generally preferred.

Halogen/Xenon Lamps
A Halogen lamp is not a different kind of lamp, it is merely another form of incandescent lamp. It has a tungsten filament just like a regular incandescent, but because the lamp operates at a very high temperature, the bulb is more durable quartz instead of glass. Instead of containing argon and nitrogen like a regular incandescent lamp, the bulb is typically filled with argon with a trace amount of bromine or iodine vapor. Bromine and iodine are elements from the halogen group of elements; — hence "quartz-halogen".

As is the case with a regular incandescent, the tungsten evaporates slowly whenever the lamp is in use, eventually depleting the tungsten to the point where it will no longer emit light. But the argon-halogen gas in a halogen lamp carries the evaporated tungsten particles back to the filament and re-deposits them. This gives the lamp a longer life than regular A-Series incandescent lamps and ensures a cleaner bulb wall for light to shine through. Halogen lamps are slightly more efficient than regular incandescent lamps, but not greatly so. Their real advantage is in their longer rated life before burn-out, not in their efficiency.

Incandescent lamps burn for only about 1,000 hours and halogens last between 2,000 and 3,000 hours. Compare that to CFLs, which last 8,000 to 10,000 hours and full-size fluorescent lamps at about 20,000 hours.

The newest incarnation of the quartz lamp for household use is the xenon lamp. The hype surrounding Xenon bulbs suggests that they are a radical innovation in lighting technology. In fact they are merely a halogen-type lamp filled with xenon rather than argon gas. Developed originally for automobile headlights, The bulb has migrated into household low-voltage systems. Its advantages are that is burns cooler and produces a more even "whiter" light than regular halogen lamps. It is also quite a bit more costly, although prices have started to decline recently and will probably reach par with regular halogen lamps very shortly.

Light-Emitting Diodes
Unlike "innovations" such as halogen and xenon bulbs, light-emitting diodes (LEDs) are truly something new. They don't have a filaments to burn out. Instead, they produce light from one of the simplest of electronic semiconductors: a diode. A diode is a semiconductor composed of two different materials bonded together. Electrons flow from one material to the other, producing a current. This current results in the release of photons. All semiconducting materials produce photons, but in most semiconductors the electron jump is so short that the photon produced are at a frequency higher than we can see. Special materials, usually modified aluminum-gallium-arsenide (AlGaAs) are used for LEDs because they force the electrons to jump a larger gap so that the photons produced are in the visible spectrum. The gap can be tuned to produce different frequencies, and thus different colors of visible light.

But this is not yet all of the story. In an ordinary diode, the semiconductor material itself ends up absorbing a lot of the light energy. LEDs are specially constructed to release a large number of photons outward and usually housed in a bulb that directs most of the light out of the tip of the bulb. You can see this directional effect in traffic signals that use LEDs. From head on the light is bright and clear. As you move to the side, however, the light becomes dimmer until at some point it cannot be seen at all.

How Much Light Do I Need?
Thereís actually a proven, rule-of-thumb, formula for calculating the amount of ambient light you should have in each room or area of your home… and itís not difficult, just some basic arithmetic.

Multiply the length times the width of the room in feet. Then, multiply that number times 1.5. That gives you the number of watts you need to light the room properly for general illumination.
Example: A room is 12 ft. x 16 ft. Multiply 12 x 16 x 1.5 = 288 watts*. A ceiling fixture designed and rated for three 100 watt bulbs provides 300 watts of light, enough ambient light for this room,, but it would be better spread out across the ceiling, for example, three 100 watt recessed lamps.
For specific task lighting in areas where stronger light is needed, multiply the areaís square footage by 2.5 rather than 1.5 to find the needed wattage. A kitchen countertop or work island are examples of task areas in your remodeled kitchen.
Example: To adequately light a 6' x 2' countertop multiply 6 x 2 x 2.5 = 30 watts. An undercabinet fixture equivalent to a 30 watt incandescent bulb is adequate for this countertop.
If you employ a lighting consultant to design the lighting for your kitchen remodel, he or she will use much more sophisticated methods, including meters that measure the amount of light falling on each surface (see the sidebar "The Best Light for Kitchen Countertops", this page, for more information), the amount of glare, and the location and duration of shadows. But, for most kitchens, this simple calculation and some common sense is all that is needed.

Think Lumens, Not Watts
Wattage is not actually a measure of light output. It is a measure of electrical input. But, over the years it has become the de facto standard for sizing incandescent lamp output So, now all types of lamps, not just incandescents, are rated for their light output in watts. You will see at CFL or LED marked as equivalent to a 60 watt bulb, for example. This makes it easy to buy the right combination of light bulbs no matter the type of lamp you select.

But, the correct measure of light output is lumens. All light bulbs will be rated for lumen output after 2012. So, it is best to get used to thinking in lumens, not watts.

The conversion is easy. A watt produces about 14-18 lumens (we use 16 as the average), so a 100 watt bulb is about 1,600 lumens, give or take. Any bulb rated 1,500-1,700 lumens will produce about as much light as a 100 watt incandescent bulb, although CFLs and LEDs will use considerable fewer watts to do so. Here is the equivalency table:

Incandescent WattsLumensLED or CFL Watts*
1502,50040-45
1202,00022-40
1001,60023-30
751,10019-25
6080013-15
404509-13
252504-9
* As of 2016. As CFLs and LEDs get more efficient, the wattage required will undoubtedly decrease.

The service life of LEDs is somewhat difficult to measure since it, more than for any other lighting technology, depends on environmental factors and design. Recently, however, manufacturers have begun rating their LEDs at about 70,000 hours — or 3 1/2 times the lifespan of a fluorescent tube. About 10 years of normal use. But again, this estimate may be difficult to interpret. An LED "bulb" is actually a cluster of dozens to hundred of LEDs. Some of these can "burn out" without much decrease in overall lighting. And, even the term "burn out" is not accurate in describing an LED. LEDs slowly decrease in light output, but rarely reach zero light. The Illuminating Engineering Society (IES) currently recommends considering an LED "burnt out" when it reaches 30% of its original light output.

Until recently, LEDs were too expensive to use for most lighting applications because they're built around very advanced semiconductor technology. But, the price of semiconductor devices has plummeted over the past decade, making LEDs a more cost-effective lighting option for a wider range of applications. You can use them for task lights, reading lamps, and night lights; in closets and for path-marking outdoor lighting. At some point, probably very soon, we are going to reach the point at which LEDs become comparable in price with CFLs and high efficiency incandescents. Already available in undercabinet light bars and pucks and as recessed ceiling lighting, LED lamps with a standard, E26, light socket have recently come on the market. But at $40.00 and higher per bulb, these are not yet price competitive with CFLs.

The Best Light for Kitchen Countertops


The best lighting for kitchen countertops requires attention to two main critria: the amount of light falling on the countertop, which is called illuminance level; and the evenness of the lighting, or uniformity.

Illuminance is determined by measuring the light level at various points on the countertop, using a light meter then averaging the results to get an overall level of illuminance.

To make the process fairly precise, a grid is usually laid on the countertop, and measurements taken at every grid intersection. For kitchen countertops, the recommended level of illuminance is 500 lux.

In case you were asleep when lux was discussed during your Introduction to Electrical Engineering class in high school, a lux is defined as:
" the unit of illuminance and luminous emittance, measuring luminous flux per unit area."
Glad we were able to clear that up for you after all these years.

Actually, as far as we are concerned, a lux is a just a number on our light meter, which measures in lux, whatever a lux is.

We try to bring the average ambient illuminance level of the whole kitchen to about 200 lux — which means the needle points to 200 on the light meter. So, the task lighting for a countertop should add another 300 lux to the ambient light level.

Uniformity, or evenness of the countertop lighting, is equally important. Uniform lighting is easier to work under. It does not strain the eyes as much as alternating bright light and shadow. A countertop is generally considered uniformly lit if the brightest spot on the countertop is not more than 5 times brighter than the darkest spot. The result is usually expressed as a ratio, for example 4:1, meaning the brightest area of the countertop is four times brighter than the darkest area. We strive for a 3:1 ratio.

Much of providing uniform lighting is positioning the lamps that illuminate the countertop so they don't throw shadows. There are a variety of techniques to achieve the desired effect, including bouncing light off of the wall to create a wash of reflected light that helps eliminate hot spots.

Efficient Lighting Requires Precise Design
Efficient lighting starts with good design. The principals are fairly obvious: Task Lighting
A task area is any place in a kitchen where work is done. The cleanup area around the sink, the cooking area surrounding the range, the countertop where food is prepared: these are all task areas. Task areas are best lit with bright (but not glaring), shadowless light from two or more light sources. This is usually done with a combination of general room lighting combined with focused undercabinet lighting. Fluorescent tubes are particularly well suited for undercabinet lighting because of their large surface area and high lumens per watt. We typically recommend flat T8 fluorescent lamps with electronic ballasts (or the flatter T5 lamps if the light valance is very narrow). These lamps are hidden up under the wall cabinets they are attached to, so the don't have to be pretty (which is a good thing, because they're not).

You want to get the fixture close to the task area, so the underside of the wall cabinets is where most designers put the lights. Where there are no upper cabinets, then there are two choices: projecting light from a ceiling mounted fixture, or using pendant lamps that hanging on long cords from the ceiling. Island lighting and lighting over the sink is often done this way. The key is to use soft, shadowless light and to direct the light so your body does not cast a shadow on the work area, to use soft. Making sure there is enough light is also critical. Lighting experts use special meters to measure the amount of light falling on the work surface and from this information have produced tables that tell us how much light we need to provide in each situation.

If buying a new fixture, choose one made specifically for a CFL. Almost all lighting manufacturers how make their lamps adaptable to CFLs. And even in fixtures not specifically designed for CFLs, a fluorescent bulb can now be found that will work. There are even dimable CFLs now, something unheard of as little as three years ago.

Since CFLs produce little heat, they are especially suitable for recessed fixtures. Incandescent lamps produced so much heat that special recessed fixtures were needed for contact with insulation in the ceiling to prevent fires. CFLs don't produce nearly as much heat, but most electrical codes have not caught up yet, so these special fixtures are still required.

Incandescent lamps are also suitable for task lighting — just more expensive to operate. Recessed incandescent lights above counters, usually in the form of halogen or xenon low-voltage lights, can provide good task light — especially if limited "spot" lighting is required. Many manufacturers make a line of low-voltage halogen lamps especially designed for this application. But, unlike the softer fluorescent lamps, these lights cast very hard shadows which make their placement critical to avoid eye strain and even headaches in some people.

General Room Lighting
General room lighting or "ambient lighting" is the overall light that fills in shadows, reduces contrast, and lights vertical surfaces to give the space a brighter feel. Used cleverly, it can even trick the eye into believing the kitchen is more spacious than it really is. (See Getting More Kitchen Space for more details.) This background light is what you need for casual activities in the kitchen. If the kitchen has light colored surfaces and lots of windows you should have plenty of natural ambient light during the day. But, kitchens are used from before dawn until after midnight — we can't rely on windows and skylights alone to provide adequate room lighting.

Fluorescent tubes are well suited to the job of providing general room illumination or "ambient" light. They provide broad, even illumination and their efficiency makes it possible to fill the space with light without turning it into an oven in the Summer.

You can put the tubes in a central fixture but you may want to try some other approaches, like placing them on top of the upper cabinets to reflect light off the ceiling. This technique is called "cove lighting". If you have at least 12 inches of space from the top of the upper cabinets to the ceiling, this is an inexpensive way to brighten up a kitchen. But it works best if the kitchen cabinets are especially designed for cove lighting, including placing a reflective surface on the top of the cabinet. Another nice thing about cove lighting is that you can buy the cheapest fixture that works — it will never be seen. A fluorescent fixture so ugly that you wouldn't install it in your garage is perfect for cove lighting and costs about $15.00.

Accent Lighting
Accent lighting is used to focus the eye on key features of the kitchen. This lighting gives your room a sense of depth and dimension, adding to the quality of the space. It is used very sparingly to emphasize those special home objects that you want people to notice and admire. You may be lighting artwork, architectural details, collectibles, or a food presentation area. Lights in glass-front cabinets used to store fine china, or lights in display alcoves are examples of accent lighting. To be completely effective, accent lighting should be 3-5 times brighter than the surrounding ambient light.

For accent or small area lighting, use CFLs where possible and halogen/xenon lamps in preference to incandescent bulbs. Although more efficient than other incandescents, halogen lamps are still much less efficient than fluorescents. Their main advantage is a crisper, white light and better control over the light beam.

Night Lights Kitchens and baths should have a low-voltage standing light — a light that is constantly on at night. In most kitchens, the standing light is the fixture over the sink. A new option is a string of perimeter toe-kick lights.

The toe-kick is that recess under the front of the cabinet where your feet go when you are working at the cabinet. Low-voltage linear lighting systems in the toe-kick walking aread in your kitchen as well as "floating" the cabinets in a pool of light.

The design effect is dramatic, and because the perimeters of the kitchen are outlined in light, it is easy to find your way around without stubbing a toe. Toe-kick lights are typically rope lights (LED pea bulbs linked together) often controlled by a motion sensor that turns the lights on when someone enters the room — but only at night. Like all electronic devices, the price of this sophisticated switching has plummeted in recent years, making it an affordable option for most homeowners.

Wireless Light Switches
Good lighting design requires good lighting control. Lighting controls allow you to put the right amount of light in the right places and turn off unneeded lights without affecting lighting actually in use.

Today there are central electronic control panels that allow you to switch lights on an off throughout the house base on time of day, the amount of sunlight, and how the rooms are being used at the moment. For most of us, this is a little too much switch, but they are available.

Lighting control is now easter than ever with wireless switches. Wireless switches use technology similar to garage door openers. The switch sends a radio signal up to 50 feet to tell a specific light to turn off or on. Wireless switch central controls can be used in place of wired switches to handle all of the switches in a house — lights, fans, appliances, and security. In an age when copper wire is becoming a rare metal, wireless operation is becoming a more cost effective option — especially in remodels. Wireless switches can save money in kitchen remodeling because they require no wires to the switch, no demolition, no patching and no re-painting. Most remote switches are powered by batteries, but some use energy harvesting instead of batteries. The act of throwing the switch creates enough energy to send a radio signal to the receiver. The only problem with energy harvesting switches, apart from their higher cost, is that throwing the switch does not feel normal, which disconcerts some people until they get used to the absence of the expected "click".

Dimmer switches reduce light output and energy use. Older CFLs did not dim, but there are now CFLs for use in dimming circuits. They are more expensive than standard CFLs, but they are available.

Simple on/off switches can help save energy if fixtures are divided into separately switched task areas. For example, the counter, island, range and sink should each have a separate switch.

Behind the Scenes: The Hidden Kitchen
Lighting is not, of course, the only structural issue in designing a remodeled kitchen. Putting together a kitchen is not a trivial process. Besides the obvious considerations: new cabinets, appliances, a new floor and paint or wallpaper, there are many structural considerations. The structure is invisible, and usually not very pretty, but very important. Without adequate electricity, lighting, plumbing, heating and venting — all the new cabinets and …


Are you ready for your own dream kitchen?
We can build one just right for your budget. Contact usE-mail us at design@starcraftcustombuilders.com and let's get started.


Rev: 8/16/16


Need to know more about kitchen remodeling? Try these articles:
  • Adapting a Kitchen to a Budget — A Case Study (Sidebar)
    A terrific new kitchen does not have to break the bank. Even without a grand budget, you can have a grand kitchen. Learn the favorite kitchen designer tricks for packing a lot of wallop into a modest budget for a stunning kitchen that looks like it should have cost a fortune, but didn't. Don't worry though, we'll never tell.


  • Adapting a Kitchen to Human Dimensions and Movement - A Case Study (Sidebar)
    Few homeowners are of average height, average girth; have average reach or average range of motion; or use their kitchens in an average manner. Yet almost all kitchens are arranged and sized using standards written for the the mythical average person. Unless you happen to be that perfectly average person, standard kitchen dimensions and arrangements may not be right for you. Here is how we adapted one kitchen to the physical characteristics and limitations its owners.


  • Behind the Scenes — The Hidden Kitchen
    Behind the beautiful new cabinets, under the sparking countertops, beneath the gleaming tile floor are the invisible bones and sinew that make the kitchen work - electricity, venting, heating and plumbing. Find out all that's needed behind the scenes.


  • Body Friendly Design: Kitchen Ergonomics
    Planning for efficiency and ease of use are more important than ever in kitchen and bath design, and in the context of universal design has become the hot new topic among kitchen and bath designers. Every aspect of kitchen and bath design is being given a new, hard look, from countertop and toilet heights to the optimum placement of the microwave and dishwasher and the best depth of the kitchen sink.


  • Cabinet Basics
    Oak, maple, hickory, ash, cherry. Faced and unfaced. Framed and frameless. Custom, semi-custom and manufactured. MDF, Melamine, Thermofoil, even steel. So many choices. How do you pick the cabinets that are just right for you? Click here to find out.


  • Cabinet Door Styles
    There are an almost infinite number of cabinet door styles available. Here is a chart of just a few dozen of the styles we build. We could not possibly show them all. There are too many. Since we are an entirely custom cabinet builder, we can make any door you can describe.


  • Comparative Kitchen & Bath Cabinet Construction
    Some cabinets are made better than others. Learn the difference between a cabinet that is solid, well-built and will last a long time, and all the others.


  • Distributed Cabinet Manufacturing: Today's Cabinet Making Revolution
    Local and regional cabinetmakers are catching up the the factory manufacturers in creative technologies to make custom cabinetry that rivals factory cabinets in price, but exceeds factory cabinets in creativity, construction and finish.


  • Finding Some More Kitchen Space
    In many cases, existing kitchens are just too small for any real improvement in space management. Learn where to get more space, or at least the illusion of more space for your new kitchen.


  • Fine Furniture and Built-Ins
    We craft fine furniture and built-ins to match any decor or preference. From traditional to avant-garde, from Chinese to French Provincial, there is no look we cannot reproduce.


  • Flooring Options for Kitchens and Baths
    Wood, stone, vinyl, ceramic tile, laminated flooring. What are the pros and cons of each? Learn the fundamentals of kitchen flooring.


  • Guide to Nebraska Hardwoods for Cabinetmakers and Woodworkers
    Most of the fine native American hardwoods commonly, and uncommonly, used in cabinetry grow and are milled into lumber in Nebraska. If you were not aware that hardwood is a Nebraska crop, read this detailed guide to Nebraska hardwoods.


  • Kitchen Remodeling on the Cheap: Simple, Practical Ideas for Creating Your Dream Kitchen on a Budget
    If you feel you cannot afford a great kitchen, think again. A terrific kitchen does not have to break the bank. You may have to get creative and even make a few compromises in your original grand design, but you will end up with a wonderful kitchen that will look good and serve your needs for years to come. Here are a few practical ways of reducing the cost of your new kitchen.


  • Mise en Place: Mise-en-Place: What We Can Learn About Kitchen Design from Commercial Kitchens
    Organized to prepare a large variety of appetizing meals at a moment's notice, we can learn a lot about kitchen efficiency from studying commercial kitchens.


  • New and Traditional Countertop Choices
    Exciting changes are happening in the world of countertop materials. Options that simply did not exist 10 years ago are in every home store today. Is solid surfacing, laminate, stone or tile your best choice? Or maybe something more exotic. Take a look at the incredible selection of modern counter top materials.


  • Off the Wall Kitchens: Living Without Wall Cabinets
    Wall cabinets are unquestionably useful storage, but with drawbacks. A major disadvantage is that wall cabinets make a kitchen seem smaller by closing in the space at eye level ó which is where we subconsciously judge how large the space around us is - and limit the number and size of windows in the kitchen. Can your new kitchen do away with wall cabinets? Probably. Find out how.


  • Saving Household Water
    Fifteen billion gallons of fresh, treated water are used in American households every day. It not only deletes our water sources to waste this water, but costs a fortune in electrical power to treat and pump it into our homes. Find out what you can do to reduce your impact on the environment while saving 33% of your water bill.


  • Solving Corner Cabinet Woes (Sidebar)
    Corner base cabinets are notorious as dark, difficult-to-reach storage space. Useful corner storage requires some pretty fancy hardware to make the space work. There are a variety of solutions, some better than others. But is is possible to make a corner cabinet effective storage with just a little prior planning.


  • Sources of Supply: Faucets
    Thinking about buying a faucet? Before your do, see our list of major faucet manufacturers with ratings and guidelines on what to look for and how to select a good, lifetime faucet.


  • Using Toe-Kick Space (Tips and Tricks)
    The toe-kick space under your cabinets can be effectively used for extra storage, to store kitchen and bathroom accessories and for truly dramatic lighting.